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Abstract--Equations for two-phase flow are developed where the interfacial pressure p~ is the closure 
variable. The assumption that/~ is constant leads to variations of the single pressure model with several 
aphysical properties. Use of more realistic pressure distributions, for flow about solid particles, produces a 
model displaying added mass and drag effects and having real characteristic roots. 

INTRODUCTION 

In many applications involving the flow of two fluid phases, or of a fluid and solid phase, it is 
desirable to seek a dynamical description of the total flow in terms of quantities averaged in 
either space or time. In recent years there have been advanced formally exact derivations of 
these equations, for instance Ishii 0975). Like their turbulence counterparts, however, the 
difficulty in using such formulations lies in choosing appropriate closure forms for each of the 
many interaction terms introduced by the averaging process. 

One peculiarity that has emerged for two-phase flow is the occurrence of complex charac- 

teristic roots in some model equation sets (Gidaspow 1974). The mathematical implications in 
this instance are unclear, but for linear partial differential equations initial-value problems 

would be ill-posed and their solutions can not be generated. No rigorous theorems are yet 
available, but Lyczkowski et aL (1975) have reported difficulty in obtaining numerical solutions 

to such equation sets. Several attempts have been made to improve the mathematical properties 
by introducing more physical properties into the description. Ramshaw & Trapp (1975) 

considered surface tension effects, while Travis et at. (1976) considered viscous stresses. This 
paper considers yet another phenomenon, interfacial pressure forces. 

In addition, to produce the correct acceleration of small density phases during transient 
motion, the so-called added mass effect of the heavier fluid must be accounted for. Such effects 
do not arise naturally in most models and are either neglected or added in an ad hoc manner. 

To help clarify some of these points, the present paper attempts to determine the con- 
sequences of various assumptions about the interfacial pressure distribution on the ma- 

thematical and physical character of the averaged, two-phase flow equations. The work starts 
with the formally exact equations of Ishii and through simplifying assumptions reduces them to 
a system for which closure depends only on the choice of the interfacial pressure. The 
properties of the final equations can then be understood in terms of the assumptions made 
regarding the small-scale flow near the interface. 

The simplest choice for the interfacial pressure distribution, Pi, is that it is constant and 
equal to the bulk pressure. This leads to an equation set involving a single pressure and 
possessing real characteristics only when the two fluid velocities are equal. A slightly more 
general assumption, that the interface pressure is constant, p*, but different from the bulk 
value, p, gives real values only if p* is lower than p by an amount proportional to the square of 
the relative velocity. There is no obvious criteria, however, for choosing p* and, in any event, 
the model equations do not display added mass behavior or drag forces. 

We next use a theoretically and experimentally determined expression for the pressure 
distribution about a sphere to calculate the interfacial interaction term. The integrations are 
carried out in the limit of a large averaging volume and produce three new interaction terms 
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characterized by three parameters: an added mass coefficient, /x; a dynamic pressure 
coefficient, ~; and a drag parameter, r~. These parameters depend on the nature of the 
microscopic flow and the statistical properties of the average, but indicate the general 
mathematical character of the pressure interaction. 

The equations that result from using a realistic pressure distribution display added mass 
effects and interfacial drag and, most importantly, have real characteristic roots. Although the 
pressure distributions were obtained for isolated spherical particles, some justification is given 
for believing that similar results hold for all volume fractions and for other particle shapes. 

It is concluded that the exact formulations of two-phase flow equations coupled with 
realistic and consistent assumptions concerning the small-scale flow properties can be helpful in 
producing model equations with reasonable mathematical and physical properties. 

THE SIMPLIFIED MODEL EQUATIONS 

We begin with the macroscopic equations for two phase flow as derived by Ishii (1975) and 
reviewed by Stuhmiller (1976). These equations formally describe a very wide class of possible 
flows of two phases, including the effects of mass and heat transfer, interfacial structure, 
compressibility, turbulence, and so on. For the purposes of studying the character of the model 
equations, however, we shall eliminate many of these effects by making simplifying assump- 
tions which reduce this general formulation to one tha.t is more manageable. 

First, we shall neglect the effects of fluctuations. The proper description of turbulence in a 
multiphase flow is beyond the scope of the present work and its influence on the resulting 
model equations must be judged separately. Over a wide range of flows, however, the 
dominant interracial stress is due to pressure and not turbulence. Second, we shall consider 
flows in which thermodynamic processes are unimportant, that is, those for which there is no 
heat or mass transfer between phases and for which both fluids may be separately considered 
as incompressible. In air-water mixtures, for example, this would be met in many engineering 
applications. Finally, we shall assume that viscous forces may be neglected in the bulk phases. 
Of course, at any surface in relative motion with respect to a fluid, such as the phase interface, 
a boundary layer must develop. For the blunt bodies we will consider, this thin, no-slip region 
profoundly modifies the pressure distribution along the surface no matter how small the 
viscosity. Above a critical Reynolds number, however, the interfacial forces are dominated by 
pressure, not the viscous stress itself. For spheres this critical value is about 24 (Batchelor 
1967). Therefore, the effects of viscosity in the boundary layer will be incorporated indirectly 
through the modified interfacial pressure distribution. The macroscopic equations then reduce to 

aa__~k + V. (akVk) = 0, t l] Ot 

f~Vk~, .V)vk}= + Mk, [2] 

a I + a2 = 1, [3] 

where 

Mk = ,~j --Ilk 
• ~ Pk~ 

is the interaction force due to the interfacial pressure. Here, Ilk is the outward unit normal to 
the surface bounding phase k, l/Ls is the interracial area per unit volume, and the sum is 
understood to be over all interfacial elements within the averaging volume. Equations [ 1]-[3] are 
five equations for eight unknowns: ~k, Vk, Pk, MR. 

As can be seen, the interaction force is composed of a geometric part, nk/L b and a dynamic 
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part, Pki. For gas-liquid or liquid-liquid mixtures, an adequate description of the evolution of 
the interfacial geometric properties may well be the most challenging aspect of two-phase flow 
modeling. For now, however, we shall avoid these difficulties and assume that one phase, k = 1, 
is dispersed into many small, spherical regions, each of radius R. This greatly simplifies the 
calculation of the interfacial sums and, if a surface tension, or, exists between the phases, then 
the balance of normal stresses at the interface requires 

or 
Pu = P2i +~-~. [4] 

One final assumption concerns the bulk pressures. In the review by Stuhmiller (1976) it 
appeared that the closure assumption for the interfacial pressure and that for the bulk pressure 
play central roles. The present investigation focuses on the former, but to be specific, some 
choice of the latter must be made. Since the pressure in the dispersed phase is systematically 
higher by or/2R than that of the continuous phase, we shall take 

or 
P '  = P2 + ~-~. [5] 

This relation does not follow from the underlying conservation laws and deserves critical study in 
its own right, but since it has been employed explicitly in some models, e.g. Ramshaw & Trapp 
(1976) and tacitly in many others, it is a convenient bulk pressure closure relation for the present 
analysis. 

With the help of the identity (Ishii 1975, p. 75) 

~Olk ---- ~ --nk 
• ~ [ 6 ]  

and the definitions P21 ~ Pl and Pz =- P, the one-dimensional form of the model equations become 

Ot +~x (a'vl) = O' 

0a2+ 0 , . _ 
7x ta2v2j = o, 

c~,O, + v ,  Ox]  -~-}-(a,p)+M, 

roy2+ 0v21 O 
c~ 202 I_ O t v z -~x J = - - ~  ( a z p ) - M,  

0/1 "{- ~2 ~--- l ,  

--t]1 

[7] 

[8] 

[9] 

[1o] 

[ll] 

[121 

When the interracial pressure distribution, p: is given, [7]-[12] are six equations for six 
unknowns: at, a2, v~, v2, p, M. We can now explore the consequences of various assumptions 
concerning that pressure distribution. 

THE ASSUMPTION OF CONSTANT INTERFACIAL PRESSURE 
The simplest constitutive relation for the interfacial pressure is that it is constant 

p~ = constant, p*. [ 13] 



554 J. H. STUHMILLER 

The interracial force is then 

, a t ~  M=p-ff 

and the model equations, written in matrix form, become 

I 
, o o o] [o,] 

- l  o o o / ~ / ~ , /  
o p,~, o o / ~ / ~  / 
o o ~2~2oj Lp ] 

Vl 

--V 2 + 
p - p *  
p * - p  

0 
pla jV~ 

0 

0 
~2 
0 

P2~2V2 

0] ro,] 
O/ale, / 
~'/~/~/ 
°~J LPl 

=0. [14] 

The characteristic values of this set satisfy the equation 

A + vl a l  0 

- (4  + v2) 0 a2 
p - p *  pt~(A + vt) 0 
p* - p 0 p:a2(g + v:) 

0 
0 

= 0 ,  
O~1 

Or2 

which, when expanded, is 

p - p* = t~2p~(A + v 1) 2 + ~ Ip2(A + v2) 2. 

The condition that the characteristic values of the equation 

A(A + v,)2+2B(A + vj)(A + v2)+ C(A + v2) 2= D ( v , -  v2) 2 

be real is that the discriminant is positive, that is, 

B 2 + (A + 2B + C)D >- AC. 

In the present case this becomes 

(a2p l  + e~ ip2)(P - P * )  >- ot iot2plP2(Vl -/32) 2. [15] 

If we were to make the additional assumption that p = p*, an assumption which leads to the 
single pressure model proposed by several authors, then the only case for which real charac- 

teristics exist is the homogeneous flow, v~ = v2. For the more important case of unequal 
velocities, [15] indicates the interface pressure must be systematically lower than the bulk 
pressure to retain real characteristics, in fact, lower by an amount proportional to the square of 
the relative velocity. Since by Bernoulli's law, the pressure does vary as the square of the 
velocity along a streamline, and is systematically lower than the free stream value in regions of 
high velocity, such as occurs in the neighborhood of an obstruction, then one might anticipate 
that the inclusion of more details of the subscale flow could lead to equations with real 

characteristics. 
Even with the resolution of the complex characteristic behavior, however, the pi = constant 

equations have the aphysical property that for a given applied pressure gradient the phases 

accelerate inversely as their densities. Thus a bubble of air released in a glass of water would 
accelerate at 1000 g! Not only is this phenomenon not observed, but the cause of the dilemma 
has been well studied. Such a description neglects the inertia of the surrounding, heavier fluid 
which must be moved to allow the bubble to rise. The bubble acts as though it has an extra 
inertia comparable to that of the surrounding fluid--the so-called added mass effect. This is 
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another property which arises out of the influence of the microscale flow and is lost in the 
pi = constant assumption. Before considering more realistic pressure distributions, a comment 
on characteristics is in order. 

COMPLEX CHARACTERISTICS AND SOLUTION BOUNDEDNESS 

For linear, partial differential equations, the occurrence of complex characteristics is 
associated with several aphysical properties, including the exponential growth of disturbances, 
especially at small space and time scales. This is illustrated by the equation set 

~t' Oh 0 

oh_ =o, 
ot ox 

whose characteristic values are k = +i. The evolution of a local disturbance in an infinite 
domain, or one for which f or Of/Ox vanishes at the end points, can be easily shown to satisfy 

a2 f ½f2dx= a_f_. z+ ~ z dx 

Thus, disturbances grow without bound and the most rapidly growing are those whose spatial or 
temporal scales are small. 

For quasi-linear, partial differential equations the conclusions are less obvious. From [14] one 
can derive the mechanical energy variation 

0r : 2 j ,=,    o,v,2 dx = f 0,._ p) o . , .  Vk ~ ClA. 

When the velocities are unequal and p =p*, the characteristic values are complex, yet the 
solution is bounded and the mechanical energy conserved for all wavelength disturbances. This 
is one indication that the theorems and intuition that have developed regarding linear pde's with 
complex characteristics may not apply to quasi-linear pde's without some modification. 

FLOW ABOUT A SPHERE 

We imagine a situation in which there are many dispersed particles within the averaging 
volume, precisely the limit in which one would expect the averaging concepts to be most 
meaningful. When the individual particles are widely enough spaced, that is for small enough 
volume fraction of the dispersed phase, the flow about each can be considered to be unaffected 
by neighbors. We will relax this condition later. For inviscid flow about a sphere in arbitrary 
motion the pressure distribution along the surface is given by Lamb 0932) as 

• 1 hdU o+lpzu2(9cos20_5),.8 Pi = P ~" ~ p2K -~- cos 

where U is the instantaneous relative velocity, v ! -  v2, 0 is the polar angle measured with 
respect to the direction of U, and the time derivative is made following the dispersed particle, 
that is, d/dt = O/Ot + vl(O/Ox). 

Experimental observation has confirmed that the effects of acceleration are adequately 
described by the above expression (c.f. Weigel 1964, Chap. I l), but for a Reynolds number 
greater than about 24, flow separation destroys the fore-aft symmetry in the non-accelerated 
component of the pressure (Batchelor 1967, p. 325 if). Since for Re < 24, the net interracial 
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force is primarily due to viscous shear stress, which we have neglected in our analysis, we shall 
consider the higher Re range. Only the most gentle motions fall in the low Reynolds number 
range; for example a I cm bubble moving at I cm per sec through water corresponds to 
Re = 100. Consistent with this range of parameters, then, the pressure distribution about a 
sphere must be generalized to 

1 R d U  pi = p + ~ p2 "-d-~-cos O + p2U2F(O), [16] 

where F(O) is determined experimentally. We can now proceed to evaluate the interfacial force 
M. 

The explicit evaluation of the interfacial sum depends somewhat on the distribution 
properties of the dispersed particles within the averaging volume: the number contained 
entirely within the volume, the number intersecting a particular face of the averaging volume 
with a particular inclusion angle, etc. We can obtain a first-order estimate, however, by using 
the sum identity [6] and appealing to the large number of particles within the averaging volume. 
We begin by separating out the average interfacial pressure level. 

Pi = (Pl) + P ~, 

<Pi) = P + p2U2(F(O)), 

, 1 
P i = ~ p2R (d U/dt) cos 0 + p2 U2F'(O), 

where <> represent an average over the surface of a sphere and F ' =  F-<F>.  Of course, 
<cos 0) = 0. The mean part is readily evaluated, using [6], as 

E - - n l  " 00~1 r r 2 x  aal 
J ~ (Pi) = <Pi) ~ = (P + (F(O))p2u) -~x" 

For the pressure distribution quoted in Schlichting (1959) and shown in figure l, we have 

<F(O)) = -0.37CD. 
The varying part makes a non-zero contribution to the particles completely contained within 

the volume (the constant part does not) and, for an averaging volume large compared to a 
particle volume, the vast majority of particles are entirely within the volume. Since the limits of 
integration are free of distributional considerations in this case, the integration can be readily 

carried out. Specifically, 

-~_~j. 1 f_ ~ fo ~ {I u t  dU } p~= ~_~ ~ Rd$ RsinOdO(-cosO)  ~p2R +p2U2F'(O) cos  0 
• particles 

The integral of the first term gives 

4 
1 dU3 ~rR3 1 dU 

- ~ m  - ~ , m  • 
particles dt Va~ 2 dt 

The integral of the second term is nothing more than the net force exerted on that sphere due to 
pressure forces, that is, the form drag. In terms of a drag coefficient, we have 

p~i~le~--'~ 1 2 2 +1 C U2 1 • CD~pU ~R = - ~  ~o2 -~. 
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Figure 1. Pressure distribution about a sphere. 
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The sign of this term is understood to be such as to oppose the relative motion. Here 
I/L, =-~ I/Lj is the total interfacial area per unit volume; we have also made use of the 
particular relation between the projected area and total area of a sphere. 

Combining these results we have 

2 0 a l  1 d U  1 2 1 M = (p -O.37Caa2U ) - ~ - ~  a,p2-~ +_-~ Cao2U -~. [17] 

It seems appropriate at this time to define three dimensionless numbers: the added mass 
coefficient, ~; the dynamic-pressure coefficient, ~:; and the drag parameter, ,/; allowing us to 
write [17] as 

. ,,2.0at d U .  v/pzU 2 
M = {p - ¢p2c' J-~--- p-atp2 ~ ~ L, ' [18] 

This latter form not only makes the mathematical manipulations that follow less cumbersome, 
but it identifies in parameter form the three effects resulting from the consideration of the 
interfacial pressure distribution. 

The model equations are now 

0a |+  0 , . ^ 

"-~ -~-~ ~aivo = u, [19] 

Oa20t + -~x (a2v2) = 0, [20] 

a,(pl + I~p2) { o~-~ + v, 0v,1 f Ov~ + ap 

t0v,+ av, 1 (a2 + l~al)p2 OV2 + (a2v2 + l~alvt)Pz ~ ' ~ -  ail~P2 [ v| ax J 

= -° t  2 O P + ~P2(1) l - V 2 ) 2 -~x l "T"tl -~-~s p 2 U x , [22] 

The characteristic values satisfy the equation 

[23] 
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which leads to the condition 

/ - -  t x i  " * c~1 + - [241 
l p2 / P2 

for real roots. Clearly, this inequality will be met if 

~: -> 0/I, [25] 

for any density ratio and any added mass coefficient. Since ~:->0.17 for a single, spherical 
particle, that is, in the limit as 0/1~0, we can see that the equation set [19]-[22] has real 
characteristics in those flow regimes for which the microscale pressure distribution used is valid. 

Furthermore, the added mass behavior, which removes the aphysical over-acceleration of 
light masses, and the form drag interaction forces, that provide the limit on the allowed slip 
velocity, appear as natural consequences of the inclusion of the variability of the interracial 
pressure distribution. Although the evaluation of the interfacial sums is admittedly primitive in 
the present treatment, it does indicate that all of these very real and important effects can be 
systematically accounted for in a macroscale model. 

EXTENSION TO PARTICLE-PARTICLE INTERACTIONS AND 
OTHER INTERFACIAL GEOMETRIES 

The previous results demonstrate that ambiguities can be removed at small volume frac- 
tions, 0/~0.17. Even at this apparently small value, however, the surfaces of neighboring 
particles in a cubic-packed array are less than a diameter apart, so that one might expect 
particle-particle interactions to be of some importance. One of the effects to be expected is that 
particles will be partially immersed in neighboring wakes, lowering the bulk-averaged velocity 
difference. Thus the drag coefficient, based on the macroscopic velocity difference, must 
increase rapidly with the volume fraction. This is indeed borne out in experimental measure- 
ments of flow about solid spheres conducted by Rowe and quoted by Wallis (1967), pp. 178 ff, 

where the drag coefficient obeys the law 

CD(0/0 = Co(0)(1 - 0/i)  -2"7. [26] 

For al = 0.17, the drag coefficient has increased by a factor of 1.65 and the range of parameters 
for which [25] is met is greatly increased. In fact, if we use [26] in [25] we obtain 

0.17 -> al(l - 0 /1)  2"7. (27) 

The maximum value of the R.H.S. of [27] is only 0.12 so that we find that the equation set 
[19]-[22] has real characteristics [or all volume fractions when particle-particle interactions are 
taken into account. Of course, with the close packing that occurs even for al <0.17, region 
coalescence and interfacial distortions will probably play an even greater role in fluid-fluid 
flows. 

Much of the previous work can be taken over to non-spherical regions with only slight 
modification. As long as interfacial distortions are not allowed, surface tension still plays no 
role; the added mass and drag coefficients can, in principle, be measured or calculated for 
arbitrarily shaped regions. For example, Lamb (1932), p. 155, tabulates the added mass 
coefficients of an ellipsoid for various degrees of elongation and orientation; in general end-on 
motion results in 0 --- t~ --- 0.5, while broadside motion gives 0.5 -< ~ - 1.0. 

For streamlined shapes, the dynamic-pressure coefficient ~ is no longer principally related to 
the drag coefficient, since the flow separation region is confined to a small area near the back 
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and most of the drag is due to viscous stresses in the turbulent boundary layer. The low 
pressure area brought about by the increase in flow velocity near the body, however, extends 
over the entire surface, with a negligible high pressure area near the front. For the pressure 
distribution, shown in figure 2, measured about a long body of revolution (Schlichting 1959, p. 
20) we find ~ = 0.06, so that, even with the neglect of the turbulent shear stress, the interracial 
pressure forces make a large contribution toward keeping the characteristics real. For these 
complex, extended bodies where many more degrees of freedom are allowed, the present 
analysis is probably inadequate. The complete description will require, then, incorporating more 
of the effects of the microscale processes and the dynamic evolution of the interface. 
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Figure 2. Pressure distribution about an axisymmetric streamlined body. 

SUMMARY 

The modeling of two-phase flows is certainly in a very formative stage and one cannot be 
sure that all of the important questions have been raised, let alone that any have been 
answered. It is difficult to foresee which will emerge as the most pertinent issues and how they 
will be resolved. In the meantime, heuristic reasoning will play a central role in such 
investigations. 

The present work is no exception, despite its attempt to make explicit assumptions and 
approximations and to begin with an exact formulation. The neglect of terms arising from 
fluctuations and the use of a bulk pressure closure relation may influence our conclusions in 
some profound way that is not now evident. 

In spite of the uncertainties, however, progress appears to have been made. The results 
presented show that including information about the subscale flow can drastically alter the 
macroscale model and that when the information is reasonably complete this alteration seems 
to be in the right direction, that is, aphysical behavior is removed in a natural way. The model 
equations [19]-[22] contain most of the effects that one would expect of the dispersed flow 
regime and might be expected to be an improvement on many of the elementary two-phase flow 
models. 
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